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Abstract  

In recent years, many vendors have produced cache coherent shared memory symmetric 
multiprocessors. While most of the systems that used, at most, eight processors have been 
successes, the same statement cannot be made for the larger, more scalable systems. Some of 
the larger systems have been extremely successful, others have been marginally to reasonably 
successful, and a few have been outright failures. Based on the author's experience 
programming the KSR1, Convex Exemplar, Silicon Graphics Inc. (SGI) Challenge and Power 
Challenge, and the SGI Origin 2000, some insights into key design issues for a successful cache 
coherent shared memory symmetric multiprocessor are discussed. The report concludes with 
a frequently overlooked issue—the cost effectiveness of some of these designs. In particular, any 
design that requires the widespread replication of key data structures will have a hard time 
establishing its cost effectiveness (even if it does meet the requirements for performance and 
scalability). 
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1. Introduction 

Traditionally, the list of commercially available computers could be separated into the following 

groups: 

• Uniprocessors. 

• SMPs based on a small number (2-8) of powerful processors. 

• SMPs based on a moderate number (no more than 64 and frequently less than 20) of weak 

microprocessors. 

• MPPs based on a large number (hundreds to thousands) of weak microprocessors. 

There have been an increasing number of attempts at producing more powerful SMPs. The 

following is a list of some of these efforts: 

• Use larger numbers of vector processors (e.g., Japanese Numerical Wind Tunnel—currently 

160 processors rated at 1.6 GFLOPS each). 

• Use more powerful RISC processors (e.g., Silicon Graphics Inc. [SGI] Power Challenge). 

• Use larger numbers of processors (e.g., KSR1 and Convex Exemplar). 

Note: This work was made possible through a grant of computer time by the Department of Defense (DOD) High 
Performance Computing Modernization Program. Additionally, it was funded as part of the Common High 
Performance Computing Software Support Initiative ao^ministered by the DOD High Performance Computing 
Modernization Program. 

Note: All items in bold type are defined in the Glossary. 



•    Use larger numbers of more powerful RISC processors (e.g., SGI Origin 2000 and SUN HPC 

10000). 

This report restricts itself to issues involving creating a scalable shared memory SMP from RISC 

(or CISC) processors. 

The basis for this report is the author's experience programming on the KSR1, SGI Challenge 

and Power Challenge, Convex Exemplar SPP-1600, and the SGI Origin 2000. This experience 

includes a combination of small test programs designed to measure specific features in the system 

and the porting and parallelization of a complete production scientific code (F3D) to these systems 

(with the exception of the KSR1, which was already turned off when this effort began). What made 

this effort particularly noteworthy is that F3D is an implicit CFD code and, at the start of this project, 

it was already known to perform quite poorly on RISC-based architectures. Furthermore, many of 

the author's colleagues doubted that it would ever perform well on any architecture that used a 

memory hierarchy. Finally, it was common knowledge among experts in the field that implicit CFD 

codes could not be parallelized without adversely affecting their results/efficiency (fortunately, no 

one bothered to tell this to the author). 

The author (in conjunction with J. Sahu, K. R. Heavey, and others from the U.S. Army Research 

Laboratory [ARL]) successfully demonstrated that, in fact, F3D could be ported to and parallelized 

for some RISC-based SMPs (Collins et al. 1997; Pressel 1997, 1999; Sahu et al. 1988; Sturek, 

Tezduyar, and Muzio, to be published). 

Based on the results from this work, it is explained why it is important to maintain as high a 

bisectional memory bandwidth as possible. In particular, architectures that rely upon an extremely 

large per node cache (e.g., COMA architectures like the KSR1 or the CTI cache in the Convex 

Exemplar) as a method for tolerating low bisectional memory bandwidths and or extremely high 

levels of off-node memory latency will not perform well when running codes such as F3D. This is 

an important observation since this class of codes represents a natural constituency for shared 



memory SMPs, while many other classes of codes will run just as well on an MPP. Therefore, 

unless a scalable shared memory SMP does a good job of supporting codes such as F3D, it may be 

hard to justify the added expense and limited scalability normally associated with shared memory 

systems. 

Finally, the costs associated with replicating data are reviewed. There are many ways in which 

this might happen (e.g., large per node caches, explicitly copying data into local memory, or 

replicating the data on a per process basis for message-passing codes). The key point here is that, 

no matter how this occurs, the replication of data will decrease the maximum job size that can be 

run, while increasing the cost of running an individual job. Therefore, any system that relies upon 

this strategy will have trouble proving its cost effectiveness, unless the strategy results in a major 

boost in performance. 

2. What Makes Implicit CFD Codes So Hard to 
Parallelize? 

In order to understand why shared memory SMPs are inherently well suited for running 

parallelized implicit CFD codes, one needs to understand something about how these codes work. 

Depending on the nature of the problem and the algorithm used to solve it, one can classify many 

codes into one of three categories on the basis of the communication patterns: 

1) Particles or grid points only interact with their nearest neighbors. In this case, one can 

separately store the values from the previous time step and the current time step. This makes 

the calculation of the values for the current time step independent of each other and results 

in a highly parallelizable program. 

2) Particles or grid points may naturally form clusters (e.g., stars forming a galaxy will only 

weakly interact with other galaxies). In this case, one can separately calculate the values 

associated with each cluster; although, within a cluster, the amount of parallelism may be 

highly limited. Usually, this is an approximation, but, under ideal conditions, it can result 



in a significant amount of parallelism without a significant decrease in the accuracy of the 

results. 

3) Particles or grid points may be grouped in a very small number of clusters or zones (possibly 

just one). While, in theory, it may be possible to process the clusters or zones in parallel, this 

is likely to result in significant problems relating to load balancing. The two most 

appropriate solutions to this problem are as follows: 

a) Parallelize the processing of individual clusters or zones and then process the clusters 

or zones one at a time. Depending on the algorithm, this may support only a modest 

level of parallelism. 

b) Split the clusters or zones into many smaller clusters or zones (a process known as 

domain decomposition). The problem here is that some codes (e.g., implicit CFD 

codes like F3D) propagate information throughout a zone in a single time step. For 

example, if a hammer hits one side of the zone, then the entire zone will feel the 

shock wave in a single time step. If the zone is split into a large number of small 

pieces, this behavior is lost and the run may fail to converge to a solution. 

Alternatively, one may have to significantly decrease the size of the time step to 

avoid the convergence problems. A third alternative is to change the algorithm, but 

this choice is, in general, not well received by the computational scientists! 

If one considers case 3a in greater detail and, in particular, considers how implicit CFD codes 

behave, some important patterns become apparent: 

• Some loops have dependencies in them in one or even two directions. 

• In general, there will be two or more loops with incompatible dependencies, which prevent 

one from parallelizing all of the loops under a single outer loop. 



• Historically, these codes have been considered to be good performers on vector processors. 

This guarantees that, for most if not all of the loops, they are, in theory, parallelizable in at 

least one direction. 

If one looks further at what it takes to turn vectorizable code into parallel code, the following 

observations come to mind: 

• From a software perspective, one needs to interchange loops so that the parallelizable loop 

has as much work associated with it as possible. 

• Also, from a software perspective, some of the loops will have so little work associated with 

them that it is hard to justify the overhead associated with parallelizing them. However, on 

a distributed memory message-passing environment, there is no other option. 

• From a hardware perspective, since different loops are likely to be parallelized in different 

directions, attempts to parallelize this code in a distributed memory message-passing 

environment will require frequent data redistributions. The most natural way to carry this 

out involves sending huge numbers of small messages, which results in a code that is 

strongly limited by the latency of interprocessor communication. Even if one can cluster 

messages together so that latency is less of a problem, the aggregate bandwidth for 

interprocessor communication may become a problem. 

• On the other hand, if one considers the possibility of using a shared memory SMP, one sees 

that it is no longer necessary to parallelize the small loops in the boundary condition routines. 

This dramatically reduces the need for explicitly choreographed data motion. 

• Furthermore, for the remaining places where data redistributions (now called matrix 

transposes) are still desirable, it should be noted that they can now be performed at the full 



speed of the memory system, which is almost always much greater than the aggregate 

bandwidth for interprocessor communication on the average MPP. 

• Finally, it is this author's belief that, on a shared memory system, one is generally more likely 

to be able to store multiple copies of key areas (e.g., the array and its transpose) for the 

complete length of a run. When dealing with relatively invariant arrays, this can be a 

particularly useful way to reduce the requirement for data redistribution by as much as an 

order of magnitude. 

3. The Natural Constituency for Shared Memory 
Architectures 

The obvious question when discussing the need for scalable SMPs is to ask: Why are they 

needed at all? Until that question has been answered, one may have trouble identifying the necessary 

characteristics for a successful scalable SMP. Clearly, most current parallel programs run just fine 

on the MPPs they were written for. Therefore, one should look at the programs that perform poorly 

on most MPPs and those that were considered to be nonparallelizable in the first place. 

There are any number of reasons why a program might perform poorly on an MPP (e.g., too 

many small messages, too many cache misses, etc.). Many HPF programs fall into this category, 

as do some programs that make extensive use of collective communications (e.g., data 

redistributions, reductions). In many cases, experience has shown that these codes perform best on 

scalable SMPs that have well-implemented MPI libraries (e.g., threads based, which support a very 

low latency and can minimize the amount of unnecessary memory traffic). 

In the case of programs that are considered to be nonparallelizable on traditional MPPs (e.g., 

F3D), efficient support for compiler directive-based loop-level parallelism seems to be the key. 

Additionally, there is a strong benefit for an efficient implementation of shared memory, so that one 



can parallelize the code incrementally (with a high probability that some boundary condition routines 

will never be parallelized). 

4. What Are the Special Hardware Requirements 
of These Codes? 

While one can argue things all day long, this author believes that the two main requirements are 

as follows: 

1) Since shared memory SMPs will almost always have a greater memory latency than their 

MPP cousins, they have a strong need for large external caches (e.g., 1-8 MB) that can 

sharply decrease the cache miss rate (preferably with long cache line sizes 

[e.g., 128-1,024 B]). 

2) The upper bound on the effective cost of a cache miss that misses all the way back to main 

memory must be kept to a minimum. This must be the case under as wide a range of 

conditions as possible. This implies the need for a high bisectional memory bandwidth, as 

well as a low upper bound on the cost of the cache miss. Only in that way can one be certain 

that delays due to insufficient bisectional memory bandwidth will not dwarf the cost of the 

cache miss itself. Unfortunately, both the KSR1 and the Convex Exemplar SPP-1600 have 

shown problems in this area. 

Both the KSR1 and the Convex Exemplar have attempted to use large DRAM caches to avoid 

these problems. Experience with F3D and similar programs has shown that, at least with programs 

parallelized using loop-level parallelism, the direction of parallelization will change too often for 

these techniques to be of much value. In some cases, they even seemed to be counterproductive. 

There is reason to believe that, for HPF programs as well as MPI-based programs making extensive 

use of collective communications, a similar statement might also apply. 



On the Convex Exemplar, we also experimented with using local memory to maintain copies of 

key arrays (ones that were relatively invariant throughout the life of the run). While this helped to 

some extent, the benefits were limited. Furthermore, the cost of this approach, both in terms of the 

need for extra memory and in terms of the extra time required to make all of the copies, makes this 

approach undesirable and of questionable value in a production environment. 

5. The Whys and Wherefores of Replicated Data 
Structures 

If one looks at parallelized versions of ray-tracing codes and some chemistry codes, one 

discovers something interesting. Unlike the codes people are used to talking about, these codes are 

difficult to parallelize without replicating the entirety of all of the major data structures. It is not 

difficult to see how this could raise the cost of a system by one or more orders of magnitude 

(depending on how large a problem one intends to work on). 

On the other hand, a scalable shared memory system would seem to have a natural advantage 

here. Only one copy of the major data structures needs to reside in memory. Unfortunately, there 

are some potential problems with this simplistic view. 

• One can get bank conflicts. This can be an especially big problem on systems like the SGI 

Origin 2000 and the Convex Exemplar SPP-1600, where data are allocated to a node's 

memory banks a page at a time. On the other hand, systems such as the SUN HPC 10000 

should have fewer of these problems since they manage things a cache line at a time. 

. Some systems such as the KSR1 and the Convex Exemplar SPP-1600 will perform poorly 

if a disproportionately large number of cache misses go off node. 

• If one attempts to make up for a systems shortcomings by using large DRAM caches (e.g., 

the KSR1 and the Convex Exemplar SPP-1600), then once again one is faced with the cost 

of replicating the major data structures in the DRAM cache for every node. While this might 



simplify the programming, it can still result in excessive hardware costs (although using 

larger numbers of processors per node can help to mitigate these costs). 

Therefore, even when the code does not explicitly replicate key data structures on every node, 

one needs to make sure that the hardware is not designed to do this behind the user's back. This is 

not to say that one should never replicate key data structures. If they are relatively invariant, then 

it may be desirable to store two or even three copies of key arrays, with different ordering of the 

indices. This can serve to greatly reduce the number of cache misses and/or the number of transpose 

operations that one needs to perform during the life of the run. The key difference here is that the 

number of copies of these data structures is a constant rather than being a function of the number of 

processors being used. As such, the amount of extra memory required is tightly bounded, as is the 

cost of that extra memory. 

6. The Limitations of the Concept of a Scalable SMP 

One final point is that people are used to dealing with MPPs that scale to hundreds or even 

thousands of processors. Therefore they assume that a successful scalable SMP needs the same level 

of scalability. To a certain extent, this is not a bad idea. After all, people want to run 

message-passing and even Cray T3D/T3E SHMEM-type codes on these machines. On the other 

hand, such scalability is not free. The larger a machine (any kind of parallel computer, not just an 

SMP), the harder it is to build it with an acceptable level of stability, reliability, and performance. 

Therefore, unless one's customer base is demanding very large systems, there can be a substantial 

amount of beauty to moderate-sized systems. 

Furthermore, most jobs using HPF, loop-level parallelism, or needing the ultralow latency for 

message passing that shared memory SMPs tend to offer are generally not all that scalable. This 

author has heard statements referring to limits of, at most, 16 processors. While this author has done 

much better than that on the SGI Origin 2000, it is clear that for small- to moderate-sized jobs 

parallelized with loop-level parallelism, it probably is counterproductive to parallelize most of the 



boundary condition routines. However, this raises the specter of Amdahl's Law and therefore 

makes it clear that, as the system size passes 100 processors, the law of diminishing returns will 

come into play. If one accepts that these classes of jobs represent the natural constituency for 

scalable SMPs, then one must also conclude that the incremental benefits from making SMPs with 

more than 100 processors is, at best, limited, and therefore one should only make such systems if the 

incremental costs are very small indeed. 

7. Conclusion 

It has been shown that the design of a scalable shared memory SMP is highly dependent on the 

design of the memory system. In particular, a high bisectional memory bandwidth is critical. Also 

relying on large DRAM caches will frequently be an unacceptable substitute for having a high 

bisectional memory bandwidth. Furthermore, the reliance of an architecture on the widespread 

replication of major data structures can either sharply limit the maximum job size and/or 

dramatically increase the system cost. 

At the present time, the SGI Origin 2000 appears to be the most successful scalable shared 

memory SMP on the market, while the SUN E10000 and HPC10000 are probably the second 

runners up. For some markets, the SUN systems seem to be much more successful, even though they 

are less scalable. Until recently, one of the key drawbacks to the SUN systems was the lack of a 

64-bit operating system for the El 0000/HPC10000. While, for many applications, this did not 

matter, for shared memory applications parallelized using loop-level parallelism, this put an all too 

small upper bound on the problem sizes that could be run on this machine. It is unclear at this point 

in time how long it will take for the third-party software vendors to migrate to the 64-bit 

programming environment. 
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Glossary 

Amdahl's Law: As one scales fixed-sized problems to large numbers of processors, the percentage 
of serial work (nonparallelized work) will come to dominate the run time, thereby placing an 
upper bound on the speedup one can achieve through parallelization. 

CFD: Computational Fluid Dynamics. 

CISC: Complicated Instruction Set Computer. 

DRAM: Slower, cheap memory used as the main memory inmost computers. 

HPF: High Performance Fortran. 

MPI:   Message Passing Interface. 

MPP: Massively Parallel Processor. 

RISC: Reduced Instruction Set Computer. 

SHEM: "Shared memory," an approach to low latency message passing pioneered by Cray 
Research. 

SMP: Symmetric Multiprocessor. 

SRAM: Fast, expensive memory used in caches and as the main memory of some high-end and 
special-use computers. 
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